XML and XSL

Mohammad Homayoon Fayez

Zealand Institute of Business and Technology

XML

XML was developed by an XML Working Group (originally known as the
SGML Editorial Review Board) formed W3C in 1996.

* The design goals for XML:
e XML shall be straightforwardly usable over the Internet.
XML shall support a wide variety of applications.
XML shall be compatible with SGML.
It shall be easy to write programs which process XML documents.

The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

XML documents should be human-legible and reasonably clear.
The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

Terseness in XML markup is of minimal importance.

XML (Extensible Markup Language)

e Used for the exchange of data on the web
e Describes a class of data objects called XML Documents

e A data object (textual object) is an XML document if it meets the well-formedness
constraints described in W3C’s XML specifications.(see e.g. version 1.1
http://www.w3.org/TR/xmli11/)

|t is considered well-formed if, for example
* |t contains one or more elements
 There is exactly one root or document element
* The elements delimited by start and end-tags nest properly

e |tisvalid if

* It has an associated document type declaration and if the document complies with the constraints
expressed in it

 Documents must begin with an XML declaration which specifies the version of XML being
used <?xml version=1.177>

http://www.w3.org/TR/xml11/

XML Element

 An element has a type, identified by name
* An element may have
e Each attribute has a and a

e The boundaries of an element are either delimited by start-tag(<>) and end-tag(</>) or, for empty
elements, by an empty-element tag.

* The text between the start-tag and end-tag is called the element's content

* An element with no content is said to be empty

e Start- and end-tag example:
start-tag: <student =" ">
//some content
end-tag: </student>
 Empty-element tag example:

</br>

For more read the specification at: http://www.w3.org

http://www.w3.org/

Styling XML

* You can present xml to the user butitis not such a good idea.

e You can make it more presentable, human-legible (one of the design goals. Remember?), by
styling it

 Two choices
CSS : Simple but has limitations; Only styling

XSL : Styling and Transformation

Use css when you can

Use XSL when you must. E.g. when

* something needs transformation, for example a list where some of its words have to be replaced by other
words

* empty elements to be replaced by some text

XSL

e XSL is an XML application

e Consists of three parts
o XSLT

e the transformation engine

e XPath

e Models an XML document as a tree of nodes (elements, attributes, text, etc.)
e Finds specific elements in the XML tree of nodes

 XSL-FO
e XSL Formatting Objects (a sub-language of XSL)

e Describes a printable page with text
e Uses all the CSS concepts and more, but in XML

XSL

1. UseCSS, if you don’t want to transform the document

2. Use XSL-T (If the document have to be transformed)
* Take the Original XML file
e Transformit into the XSL-FO
* Present the result on a screen or printer

3. OR
. Generate a new XML or HTML document
e Styleit with CSS
* Present the result

XML doc. XML or HTML

http://www.w3.0rg/Style/CSS-vs-XSL.en.html

XSLT + XPath

* A general transformation engine
e Content adaptation (different presentation of same XML document)
* One of the most widely used XML tools

 Many different implementation
e Built in IE6, Microsoft Edge, Mozilla

e Stand alone processors
e Saxton, Xt, FOP, iXSLT etc.

Extract from a CD collection

XML content as a tree
root

<cd> |
<artist>Aatabou, Najat</artist> cd

<title>The_Voice of the HH##sf;:Z?:ffifwtftt:::jahhmﬁ

Atlas</title> artist title catalog time filed playlist
<label/> ‘ ‘ ‘
<Catalog>CDORBD @69</Cat810g> Aatobou, Najat CDORBD o069 Cos World
<time>61.15</time>
<filed>C0O5 Wo I"—Ld</]c—'|led> The Voice of the Atlas 61.15
<playlist>
<work>Baghi narajah</work>
work>Finet I’W. ki< / work> work work work work work work
<work>Shouffi rhirou</work> ‘ ‘ ‘
<work>Lila ya s'haba</work>
<work>Quardatte lajnane</work>
<work>Ditih</work>
</playlist>

</cd>

Baghi narajah Shouffi rhirou Ouardatte lajnane

Finetriki Lila va s'haba Ditih

source: http://www.w3.org/Consortium/Offices/Presentations/XSLT_XPATH/#[8]

XSLT Structure XSLT Transformation

e XSLT transforms an XML source tree into an
XML Result tree, using templates

. XSLT
e A simple template example sl
eet

<xsl:template match="/students'"> * 4

<html>

</ht51>

</xsl:template> S 4_.' -
* This template processes the student element o) é{ .

ransformation
and generates an htm| document for the Process

student

Image source: http://www.w3.org/Consortium/Offices/Presentations/XSLT_XPATH/#(9)

Template Body

The template body contains

* Processes all student nodes
(conditional testing)Choose country nodes
tests the content of the element ‘country’

(IF) country node text matches ‘Danmark’

* Generate a <tr> (table row) and a <td> (table cell)
containing the name and country and

e Change the background color of the entire row to #ffO0ff

(Else)

* Generate name and type of the student
e Set the background color to #ffffff (white)

Extract from a XSLT template

< ="student">
< ="name" />
<xsl: >
< ="country="Denmark'">

<tr bgcolor="#ffooff">
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="country"/></td>
</tr>
</xsl:when>
<xsl:otherwise>
<tr bgcolor="#ffffff">
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="@type"/></td>
</tr>
</xsl:otherwise>
</xsl:choose>

</xsl:for-each>

JSON

 Javascript Object Notation

 Light weight data interchange format
 human-legible and clear

e Easy for machine to parse and generate

e supported by all modern programming languages.

e Built on two structures

e A collection of name/value pairs
* An ordered list of values

JSON

* A collection of Name-value pairs: * An Ordered list of values
* is realized as an object * is realized as an array.
e begins with { and ends with } {"phoneNumber" :
e Each name is followed by (:) [{
* each name-value pair is separated by (,) “type': Thomet,

"number": "21255512"

J

{"firstName": "John", "lastName": "Smith", "age": 25}
"type": "fax",
"number": "64655545"
}]

	XML and XSL
	XML
	XML (Extensible Markup Language)
	XML Element
	Styling XML
	XSL
	XSL
	XSLT + XPath
	Extract from a CD collection
	Dias nummer 10
	Template Body
	JSON
	JSON

